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It is shown that for sufficiently large negative pressure gradients the 
coefficient of friction should increase independently of whether the 
flow is "laminarized" or not. 

NOTATION 

is the coefficient of friction, M is the Mach number, k is the 
velocity coefficient, r is the frictional stress, p is the pressure, R is the 
Reynolds number, S is the entropy, k is the isoentropy exponent, T is 
the thermodynamic temperature, 0 is the stagnation temperature, to is 
the velocity-profile shape factor, U.  is the limiting velocity, w is the 
velocity of one-dimensional flow, u is the longitudinal velocity com- 
ponent, v is the lateral velocity component, x is the distance in the 
longitudinal direction, y is the distance in the lateral direction, D is 
the tube diameter, r is the tube radius, ~ is the dynamic viscosity, 
v is the kinematic viscosity, and p is the density. 
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Fig. 1. Coefficient of friction (C = g) as a function of 
the velocity coefficient according to direct measUre- 

ments of the frictional stress at the wall. 

The experiments described in [i] were the first to establish reliably 
the dependence of the "one-dimensional" coefficient of friction C0 = 
= 8r0/Pw z on the Math number M for a gas flowing in tube with sub- 
sonic veIocity. In this relation the velocity w was determined from the 
one-dimensional flow equation, and the wall friction re was found from 
the one-dimensional angular momentum equation. The rapid decrease 
of the coefficient of friction before the onset of the critical state led 
to the Iaminarization hypothesis [2]. The laminarization phenomenon 
has, in fact, been detected in some experiments [3, 4]. Moreover, the 
theory of the boundary layer [5, 6] suggests that, for large negative 
pressure gradients, the coefficient of friction should increase both in 
turbulent and laminar flows. 

This leads to the formulation of the following problem: it is required 
to find the actual (and not merely "one-dimensional") coefficient of 
friction for a gas flowing in a tube. 

We have carried out direct experimental determinations of %, and 
the results of these measurements were, of course, unaffected by the 
laminarization effect. We have used a vertical cylindrical tube 2735 
mm long and 14. 05 mm in diameter. The ~orking section was 300 mm 
long and had the same diameter. A movable element was inserted 
through a slot in the working section, and measurements were made of 
its displacement under the action of frictional forces and pressure 
differences. To obtain the values of r 0 for k between 0.6 and 1.0, ad- 
ditional loads were placed on the movable element. 

The results of measurements are shown in Fig. 1 in the form of 
= C/C ~ as a function of k, where ~~ corresponds to the incompressible 

fluid. In Fig. 1 the open circles, triangles, and squares represent 
different experiments. The experiments described in [1] have shown 
that ~0 should appreciably decrease for k > 0.80. It is clear from Fig. 
1 that g has a definite tendency to increase for k > 0.80. Thus, for 
X = 0,95 the ratio g exceeds 2, while g 0 is approximately equal to 

0.55 in accordance with the data reported by MO TsKTI. The dis- 
crepancy by a factor of more than 3.5 can hardly be explained by 
some initial factors. For sufficiently large k the velocity profile ap- 

pears to undergo a substantial deformation. The values of k beyond 
which an appreciable ehange in the velocity begins can readily be 
found from simple considerations. 

Let us now find the rate of change of the entropy along the tube 
axis: 

d S l =  t d p  k t dT1 
dx p dx + k - I T 1  dx ' (1) 

where the subscript I indicates quantities measured on the axis. 
It is assumed, as usual, that the pressure p is a function of only 

the longitudinal distance, and can be expressed in terms of k as 
follows: 

t / k - - t  \ 
1' -- ~~ t t - r ~ - i  ~)" 

Moreover, using the equation 

T1 k -  t 
= , 

where 0 is the stagnation temperature, we can readily rewrite Eq. (1) 
in the form 

d~gl I {D d@ 2k ~2 d0~ 
dx = ~ ~ (~) "t- k-}-l~"(l--T~42) dx ' (2) 

where co = k/s i is the shape factor of the velocity profile, and 

@~( s  t + ~  ~ 2k;~2/(k--1) 
i ~ ~ c0~ - -  T~ = 

It is readily verified that. for each fixed co. the function #w(k) 
will vanish for some particular value X = Xto. Moreover, for X < X w 
the function is positive, and for all k >X w it is negative. 
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Fig. 2. The quantity ~ as a function of the 
velocity coefficient. The pressure gradi- 

ents are based on the MO TsKTI data. 

Since dSl/dX ~ O, it follows from Eq. (2) that dco/dx > 0 for all 
k > kco. Consequently, the velocity profile begins to fill out before 
k reaches the value kco. The quantity kco can be found from the 
equation 

~ ( ~ )  = o .  

Hence, we have 

~,~ = 4 - -  %a)2 - -  y (4 _ 1 / ~  o)2)2 _ 6o~  ' 

where for air k = I. 4. 

For Reynolds numbers R in the range between 105 and 106 we have 

w = 0.835-0.865,which corresponds to hco = 0.795-0.830. An appreci- 
able rise in C (Fig. I) was, in fact, observed precisely for k w of this 
order of magnitude. 
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We note that the aim of the experiments was not to obtain ac- 

curate quantitative results, but to est imate the dependence of g on 
X fork-*  t .  However, if, for example,  we take into account outflow 
effects, the value of g falls from 2. 07 (Fig. 1) to 1.87, i.e., by ap- 

proximateiy 10%, but introduces no appreciable modification into the 
behavior of the coefficient of friction. 

We can also estimate r 0 from data on the static distribution of 
pressure along the length of the tube. This can be done from an ap- 

proximate expression for r which can be used with or without lam-  

inarization. 
Let us now transform to dimensioniess quantities. For the longitu- 

dinaldistance x, lateraI distance y, pressure p, axial  velocities u and 

v, thermodynamic temperature T and stagnation temperature O, we 
shall introduce the following characteristic quantities r, rR ~ p~ u, n, T, 

O, where R ~ = (ur/~)//2. 
Using the equation of motion for a circular tube in terms of the 

dimensionless variables 

9 u ~ - ~  Oy /  ~ 2k dx "~ 2r Oy 

we find that on the tube walI 

(0 "~\ k - - I  dp 
-g~y)o = % + ~- d~ �9 (3) 

Let us suppose that on the axis of the tube 

[o~ _ _  

\ O y h - -  ]n~o, O < ] n ~ l  �9 (4) 

Equations (3) and (4), and the symmetry condition (r I = 0), enable 
us to write r in the form of the poIynomial 

X = TO ( t  + al~] - -  a2y 2 -~  asy s) o ( 5 )  

From the above three conditions we then have 

~ - - t  dp 
a l ~ t +  k'~ dx ' 

k - - I  dp k - - t  dp (6) 
a 2 = 5 - - [ n + 2 ~ T x x  ' a s = 3 - I n +  k'r:o dx " 

Integrating Eq. (5) after substitution of the coefficients given by 

Eq. (6), we obtain 

" t o > - -  8k dx ~ xdy~>O , (7) 
1 

and therefore 

xo Wo k - - t  wo dp 

where  the subscript 0 indicates the in i t ia l  cross section of &e tube, 
which was assumed to be at a distance of 50 units from the entrance. 
Figure 2 shows the calculated values of @ as a function of X. It is 
clear that there is a substantial increase in @ and, consequently, in 

g with increasing )% which is in general agreement with experimental  

results. 
Therefore, the coefficient of friction for sufficiently large ldp/dx] 

is greater than at the beginning of the developed flow region, regard- 

less of whether or not the laminarizat ion effect  occurs. 
The authors are grateful to S. S. Kutateladze and A. I. Leont'ev 

for a number of useful suggestions. 
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